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A B S T R A C T   

Alzheimer’s disease (AD) is a severe neurodegenerative disorder that usually starts slowly and progressively 
worsens. Predicting the progression of Alzheimer’s disease with longitudinal analysis on the time series data has 
recently received increasing attention. However, training an accurate progression model for brain network faces 
two major challenges: missing features, and the small sample size during the follow-up study. According to our 
analysis on the AD progression task, we thoroughly analyze the correlation among the multiple predictive tasks 
of AD progression at multiple time points. Thus, we propose a multi-task learning framework that can adaptively 
impute missing values and predict future progression over time from a subject’s historical measurements. Pro-
gression is measured in terms of MRI volumetric measurements, trajectories of a cognitive score and clinical 
status. To this end, we propose a new perspective of predicting the AD progression with a multi-task learning 
paradigm. In our multi-task learning paradigm, we hypothesize that the inherent correlations exist among: (i). 
the prediction tasks of clinical diagnosis, cognition and ventricular volume at each time point; (ii). the tasks of 
imputation and prediction; and (iii). the prediction tasks at multiple future time points. According to our findings 
of the task correlation, we develop an end-to-end deep multi-task learning method to jointly improve the per-
formance of assigning missing value and prediction. We design a balanced multi-task dynamic weight optimi-
zation. With in-depth analysis and empirical evidence on Alzheimer’s Disease Neuroimaging Initiative (ADNI), 
we show the benefits and flexibility of the proposed multi-task learning model, especially for the prediction at the 
M60 time point. The proposed approach achieves 5.6%, 5.7%, 4.0% and 11.8% improvement with respect to 
mAUC, BCA and MAE (ADAS-Cog13 and Ventricles), respectively.   

1. Introduction 

Alzheimer’s disease (AD) is the most common neurological disorder 
disease that begins with severe memory impairment and a continuous 
decline in conversation, orientation and cognitive abilities [1]. An 
estimated 5.5 million people aged 65 and older are living with AD in the 
USA. The loss of cognitive abilities is irreversible for AD, hence the 
therapeutic intervention is critical at pre-symptomatic stages. Neuro-
degeneration of AD begins years before the onset of the disease and 
understanding the disease progression is important for patients in 
designing a treatment plan, predicting prognosis, and evaluate the ef-
fects of treatments [2–4]. This is a disease progression modeling (DPM) 
problem. Developing data-driven methods for DPM on the longitudinal 

data is necessary to exploit the relationship between neuroimaging and 
the development of the disease progress for better diagnosis, monitoring 
and prognosis [5]. In our work, the aim is to build a predictive model for 
the Alzheimer’s Disease progression with the relationship between the 
multiple predictive tasks (cognitive scores, clinical diagnosis, and ven-
tricular volume) and historical Magnetic resonance imaging (MRI) 
markers over time. 

Recently, predictive models have been successfully proposed for 
predicting the future cognition of ventricular volume, ADAS-Cog13, and 
clinical diagnosis of the participants. Although promising progress has 
been made by researchers in studies related to disease progression 
modeling, the challenging issues still remain. 
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1. The missing data is prevalent in most medical applications, which 
prevents the analysis of multivariate time series data. The longitu-
dinal cohorts often include missing biomarker values due to patients 
dropping out of the studies or unsuccessful measurements. Most 
previous works on modeling AD progression often ignore missing 
data issues due to the assumption of traditional statistical analysis 
models that the progression data is feature-complete. However, 
ignoring the missing data results in the loss of information for the 
machine learning models. Existing imputation approaches try to deal 
with missing values by a statistical imputation scheme. However, 
these methods are not capable of modeling both the feature relation 
and the temporal relation. Moreover, the tasks of imputation and 
prediction are studied independently. However, they can benefit 
each other. Recent studies have shown that the model filling methods 
achieve a better performance than the previous interpolation 
methods [6,7], such as forward filling and linear interpolation. In 
Ref. [6], MinimalRNN model is proposed to impute the missing data 
both in the training and testing stages with a model filling scheme for 
AD progression. The imputed missing values are used to extrapolate 
features as input, which is then used to forecast the MRI biomarker as 
well as cognitive test scores and clinical status simultaneously. 
MinimalRNN is trained to predict the observations in future months 
given the observations for the previous 3 months. The errors between 
the predicted outputs and the ground truth outputs are used to up-
date the model parameters. The major limitation is that it generates 
many inaccurate values at the unobserved time points since it takes 
one month as a time step, which transgresses the fact that the visit 
interval is over 6 months. The inaccurate value results in decreasing 
performance of the following imputation and prediction. Moreover, 
the current model filling methods cannot handle the imputation for 
the unobserved value at the farther time points such as 60 months 
later, due to the challenge of the dynamic temporal relation.  

2. Current works focus on the prediction of the target at multiple time 
points with a single model. To improve the performance, we employ 
a joint analysis strategy for multiple tasks at multiple time points, 
which is especially effective for the task with a limited number of 
patients at some certain times. The difficulty of prediction of farther 
time points and nearer time points is different. The prediction task of 
the nearest time points, e.g. 6 months later, is relatively easier, whilst 
the relationship between the MRI features and the farther time points 
prediction, for example, 5 years later, is not obvious, resulting in a 
challenging task. A single model is not capable of achieving an ac-
curate prediction performance at different time points. Therefore, it 
is important to build multiple longitudinal prediction models, each 
of which focuses on the prediction at different time points. Moreover, 
we can exploit the inherent correlation among the predictive tasks to 
improve the progression modeling performance. 

To cope with the above challenges, we propose a unified framework 
that can adaptively impute missing values and predict future MRI 
volumetric measurements, trajectories of a cognitive score and clinical 
status over time in the longitudinal data. Jointly modeling the inherent 
relations within both the multivariate and the temporal tasks facilitates 
the estimation of missing values and AD progression. To collaboratively 
construct a better model for each task, several multi-task learning model 
have been proposed by incorporating the potentially inherent correla-
tions among multiple clinical cognitive measures [8–14]. Multi-task 
learning benefits from its ability to learn a shared representation 
across related tasks and to improve the generalization performance of 
each task. Identifying how the tasks are related and how to build pre-
dictive models to capture such relatedness are critical issues in 
multi-task learning. 

Accordingly, we thoroughly analyze the correlation among the 
multiple predictive tasks of AD progression at multiple time points. 
According to our analysis on the AD progression task, we find that: 1) 
The multiple predictive tasks for the multiple future time points are 

highly relevant, given the same subject’s historical features. 2) there 
exists temporal smoothness among the multiple tasks. 

Thus, we propose a new perspective on predicting the AD progres-
sion with a multi-task learning paradigm. In our multi-task learning 
paradigm, we hypothesize that the inherent correlations exist among: 
(1) the prediction tasks of clinical diagnosis, cognition and ventricular 
volume at each time point; (2) the tasks of imputation and prediction; 
and (3) the prediction tasks at multiple future time points. With the 
assumption, we design an objective function such that the network pa-
rameters of all the tasks can be trained jointly in an end-to-end manner, 
which allows simultaneous joint imputation and prediction tasks at 
multiple time points. All the relations in the longitudinal data could be 
informative to the AD progression. More specifically, we develop an end- 
to-end deep multi-task learning method for AD progression, called MTL- 
ATM, according to our findings of the task correlation with respect to the 
model parameters and the temporal smoothness. Furthermore, the in-
tervals of multiple time points are different and are important factors for 
temporal patterns. The previous works with RNN or LSTM fail to prop-
erly model the varied temporal relation when modeling the time rela-
tion. To exploit time intervals, we choose Time_LSTM as our module to 
implicitly capture the interval information. Finally, the appropriate loss 
weights are important for the final prediction performance. In order to 
achieve optimal weights and reduce the occurrences of negative trans-
fer, we design a balanced multi-task dynamic weight optimization. Our 
multi-task model outperforms most state-of-the-art baselines, especially 
for the prediction at farther time points. Extensive experiments verify 
that our method not only achieves excellent performance in missing data 
imputation, but also obtains competitive results in the progression 
prediction performance. 

The rest of the paper is organized as follows. The related works for 
predicting Alzheimer’s disease progression are discussed in Section 2. A 
thorough problem formulation and task correlation analysis are pre-
sented in Section 3. In Section 4, we provide the overall network ar-
chitectures of the proposed MTL-ATS. In Section 5, we conduct 
comprehensive experiments to demonstrate the advantage of our 
method for the progression prediction of Alzheimer’s disease. The 
conclusion is drawn in Section 6. 

2. Related work 

Recently, using machine learning approaches to improve the early 
AD diagnosis and prognosis has attracted increasing attention [12, 
15–20]. Due to the advances of deep learning techniques, many methods 
are proposed to model the AD diagnosis as a classification and regression 
formulation [14,19,21–25]. 

On the one hand, many of the existing studies focus on cross-section 
data analysis for AD diagnosis [14,26–29]. Among them, Dolph [27] 
utilizes features extracted from structural MRI and proposes a 
multi-class deep learning model. Liu [14] first identifies the discrimi-
native anatomical landmarks from MR images in a data-driven manner 
and then extracts multiple image patches around these detected land-
marks. Cheng [28] proposes to make classification for AD diagnosis by 
constructing multiple deep convolutional neural networks with various 
features from local brain images. Although these research demonstrates 
promising classification performances, all of them do not consider the 
progressive deterioration of AD, which is an important characteristic of 
AD. 

On the other hand, in order to solve the above problems, longitudinal 
data is utilized by some researchers [6,7,22,25,30]. Sappagh [25] pre-
dicts multiple variables jointly based on stacked convolutional neural 
network and bidirectional long short-term networks. Lee [22] proposes 
an integrative framework that combines both cross-sectional neuro-
imaging biomarkers at baseline and longitudinal cognitive performance 
biomarker obtained from Alzheimer’s Disease Neuroimaging Initiative 
(ADNI). Nguyen [6] explores three different strategies to solve the issue 
of missing data and impute the missing value for subsequent modeling. 
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Jung [7] takes into account inherent temporal and multivariate relations 
in time series data, and estimates missing values in a systematic way. 

Based on the above work, the technologies of early diagnosis of AD 
have gradually attracted attention and have been studied to predict the 
disease severity of AD. However, few works focus on multi-task joint 
learning of multiple categorical and continuous variables on multiple 
time points, which could perform better than predicting each time point 
separately. Thus, this paper constructs a multi-task learning model by 
taking into account the relationship between prediction tasks on 
different time points. In the next section, we detail the methodology of 
our proposed approach for the disease progression modeling. 

3. Problem formulation and task correlation analysis 

We formulate progression prediction for multiple time points as a 
multi-task learning problem. We explore two strategies to control the 
correlation among the multiple tasks, involving both parameter sharing 
and temporal smoothness constraints. The formulation consists of q 
prediction tasks (Fig. 1). In this section, we first formulate the problems, 
and then analyze the task correlation and introduce the proposed MTL- 
ATM approach. 

3.1. Problem formulation 

We start by giving the formulation of the problem of AD progression 
prediction. The number of the training samples is denoted as N, and each 
subject has its corresponding data at T different time points, represented 
as Xt = [Xt,1,Xt,2,…,Xt,N] ∈ RN×D, where Xt,n ∈ R1×D is a D-dimensional 
vector at time point t. Yt = [Yt,1,Yt,2,…,Yt,N] ∈ RN×1 is the correspond-
ing target at time point t for all subjects, where Yt,n = [yDiag

t,n , yVen
t,n , yCog

t,n ]

represents clinical diagnosis, Ventricles and ADAS-Cog13 of the n-th 
subject at time point t, respectively. To enable the model to know which 
input features or labels are observed, we utilize mask vectors Mx and 
MCog

y ,MDiag
y ,MVen

y to indicate the input mask vector and the label mask 
vectors, respectively. Given observations and time intervals of the pre-
vious p time points. 

{(X1, Δ2,1), (X2, Δ3,2), …, (Xp, Δp+1,p)}, the proposed MTL-ATM 
approach aims to learn a non-linear mapping for predicting the future 
status: 

fpred : {(X1,Δ2,1), (X2,Δ3,2),…, (Xp,Δp+1,p)}→{Ŷ p+1, Ŷ p+2,…, Ŷ p+q} (1)  

where each prediction of Ŷp+k, k ∈ [1, q] indicates the corresponding task 
at the (p + k)-th time point. In our work, the tasks are indicated as T24, 
T36, T48 and T60. Fig. 1 shows the problem formulation of the proposed 

Fig. 1. Illustration of the problem formulation for imputing missing values and the progression in our method and MinimalRNN.  
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method and MinimalRNN method [6], respectively. 
During the training stage, the previous temporal context information 

up to t − 1 is encoded in the hidden state ht− 1 of the MTL-ATM module. 
When t ⩽ p, the information is used to impute the missing observations in 
Xt and predict Ŷ t for loss calculation simultaneously. The first t tasks are 
formulated as Eq. (2): 

X̂ t, Ŷ t = fpred&imp((X1,Δ2,1), (X2,Δ3,2),…, (Xt− 1,Δt,t− 1), X̂ t− 1) (1< t⩽p)
(2)  

where X̂t is the imputed value of the corresponding variables in Xt. The 
complete value X̃t after imputation is formulated as: 

X̃t = Xt ⊙ Mx + X̂ t ⊙ (1 − Mx) (1< t⩽p) (3) 

When t > p, the previous temporal context information up to p is used 
to predict Yt. 

Ŷ t = fpred((X̃1,Δ2,1), (X̃2,Δ3,2),…, (X̃p,Δp+1,p)) (t> p) (4) 

It is important to note that for each task k, k ∈ [1, q], the training loss 
is calculated by {(X̃2, X̂2),…, (X̃p, X̂p), (X̃p+k, X̂p+k)} and {(Ỹ2, Ŷ2),…,(Ỹp,

Ŷp), (Ỹp+k, Ŷp+k)}. However, at the test stage, performance is only eval-
uated by (Ỹp+k, Ŷp+k). 

The main differences between our proposed approach and Mini-
malRNN are as follows:  

1 For MinimalRNN, prediction at each time point is conducted based 
on all the historical observed values and the predicted values(if un-
observed or missing). As shown in Fig. 3(b), for the prediction task at 
time p + 3, MinimalRNN has to impute all the values at each month 
before p + 3 including the unobserved time point. In contrast, our 
proposed approach considers the variable time interval between two 
observed time points, without imputing the values at the completely 
unobserved time points.  

2 For prediction tasks at time p + 1, p + 2, …, p + q, MinimalRNN 
predicts each time point in sequence, which means the predicted 
values at time p + 2 are used to predict YP+3. In this way, the pre-
diction at time p + 3 inevitably produces a poorer result if the pre-
diction at time p + 2 is inaccurate. This infringes on the fact that data 
were collected at a minimum interval of 6 months, resulting in 
generating inconsistent predictions. Fig. 2 shows the predicted 
Ventricles value by MinimalRNN during 94 months. Circles in blue 
are the predicted values of MinimalRNN and circles in orange are the 
true values at some time points. As we analyzed above, MinimalRNN 
produces an inaccurate prediction at M6, which results in poorer 
prediction in the following months, a cascading error effect. 

3.2. Task correlation analysis 

In this section, we thoroughly analyze the correlation among the 
tasks of multiple longitudinal predictions. According to the analysis, two 
findings are investigated as follows. 

Finding 1: The multiple predictive tasks for the multiple future time 
points are highly relevant, given the same subject’s historical features. 
Therefore the models at different time points should be collectively 
learned. 

Analysis: We describe the prediction task proposed in Section 3.1 in 
the following way. First, task24 aims to predict values at time M24, task36 
aims to predict values at time M36, task48 aims to predict values at time 
point M48, and task60 aims to predict values at time M60. 

The main challenge tackled in this work is to perform an accurate 
prediction at a further time point M60, giving that only a small amount 
of samples are provided. Therefore we regard T60 as a reference, and 
T24, T36, T48 as auxiliary. Let yVen

m = (yVen,1
m , yVen,2

m ,…, yVen,N
m ) be a vector 

Fig. 2. Predicted Ventricles of MinimalRNN during 94 months. The blue circles 
are the predicted values of MinimalRNN and the orange circles are the true 
values at multiple time points. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Variation patterns of ADAS-Cog13 and Ventricles over multiple time points.  
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that represents true Ventricles of reference task, yVen
a = (yVen,1

a , yVen,2
a ,…,

yVen,N
a ) is a vector that represents true Ventricles of the auxiliary task. N is 

the number of subjects. Then the correlation coefficients rm,a between 
reference task and each auxiliary task is calculated as Formulation (5): 

Corr(m, a) =
∑N

j=1(yVen,j
m − yVen

m )(yVen,j
a − yVen

a )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N

j=1(y
Ven,j
m − yVen

m )

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
j=1(y

Ven,j
a − yVen

a )

√ (5)  

where yVen
m and yVen

a are average of yVen,j
m and yVen,j

a . The larger the |rm,a| is, 
the stronger correlation between the reference task and the auxiliary 
task exists. We obtain the correlation coefficients between task60 and the 

other tasks as follows: 
Table 1 shows that the correlation coefficients between T60 and T24, 

T36, T48 are all larger than 0.5, which demonstrates that strong corre-
lations exist among these tasks. These observations subsequently moti-
vate us to propose a multi-task learning method for modeling the related 
prediction tasks. 

Finding 2: There exists temporal smoothness among the multiple 
tasks. 

Analysis: Here, we further study the correlation among the longi-
tudinal tasks. We assume that the difference in the cognitive scores 
between two successive time points is relatively small. To evaluate it, we 
explore the variation pattern at multiple time points. Fig. 3 shows the 
varying pattern of ADAS-Cog13 and Ventricles over seven time points, 
respectively. In Fig. 3(a) and (b), We can clearly observe the temporal 
smoothness between two adjacent time points. To guarantee the pre-
diction value is appropriate, a temporal smoothness regularization is 
incorporated to penalize the large difference between the predictive 

Table 1 
Correlation coefficients between T60 and the other tasks.  

Corr(T60, T24) Corr(T60, T36) Corr(T60, T48) 

0.67 0.83 0.89  

Fig. 4. (a) Overview of our proposal MTL-ATM. (b)The unit of Time_LSTM. (c) Attention module.  
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score at the consecutive time points. Without the temporal smoothness 
regularization, the scores obtained by a predictive model are prone to 
fluctuation. In my experimental results, the model performs much better 
than the single task learning approaches. This is discussed later. 

These observations are important for our later analysis of jointly 
modeling the multiple tasks in a unified framework. So there is a natural 
question, how to capture such task relatedness. Here after we introduce 
our multi-task learning architecture. 

4. Methods: multi-task learning for disease progression 
modeling 

Multi-task learning (MTL) improves the performance of each task by 
optimizing multiple tasks jointly and utilizing the correlation between 
related tasks. Despite the steady growth of multi-task learning research 
for healthcare and computer-aided diagnosis, there are still two prob-
lems with multi-task learning:  

1. How to design a shared network architecture: It is important to 
develop a network of multi-task learning that exploits the shared 
information among the multiple tasks while maximally preserving 
the specific information of specific tasks.  

2. How to optimize the learning of multi-task learning: Different tasks 
are required to be properly balanced to enable the model converge to 
a state that is beneficial for all tasks. It is desirable to learn a balanced 
global task weight to avoid some tasks dominating the training 
process. 

4.1. Architecture design 

To enable both shared and task-specific features to be learned 
automatically, we integrate Time_LSTM into the multi-task learning 
framework. Fig. 4(a) shows the architecture of the proposed MTL-ATM 
approach. It consists of a shared network and multiple task-specific 
networks. The shared network is trained for modeling the shared in-
formation among the multiple tasks, whilst each task-specific network 
consists of an attention module to capture the task-specific information 
from the shared information. The network can be seen as an end-to-end 
architecture with the shared and task-specific parameters. By learning 
those parameters jointly, we arrive at a collaborative learning method to 
jointly improve the performance of the prediction tasks at multiple time 
points. In the proposed architecture, the shared layer contains:  

● The shared information between classification task and regression 
task at each time point.  

● The shared information between the multiple prediction tasks on 
multiple time points. 

Considering the existence of missing visits as we mentioned above, 
we adopt Time_LSTM as the shared layer and task-specific layer 
network. The architecture of Time_LSTM is shown in Fig. 4(b). 
Time_LSTM is a variant of LSTM. More specifically, LSTM, as a variant of 
RNN, has an advanced ability to model short and long-term temporal 
dependencies and has become an effective and scalable model for 
sequential prediction problems. The basic functions of an LSTM unit are 
defined as follows: 

it = σi(XtWxi + ht− 1Whi + bi) (6)  

ft = σf (XtWxf + ht− 1Whf + bf ) (7)  

ct = it ⊙ σc(XtWxc + ht− 1Whc + bc) (8)  

ot = σo(XtWxo + ht− 1Who + bo) (9)  

ht = ot ⊙ σh(ct) (10)  

Where {Wxi, Wxf, Wxc, Wxo} and {Whi, Whf, Whc, Who} are learned 
weights of LSTM. {bi, bf, bc, bo} represents corresponding biases. Symbol 
⊙ denotes element-wise multiplication. {σi, σf, σo} are sigmoidal non-
linearities and {σc, σh} are tanh nonlinearities. 

During the disease progression, time intervals between subjects’ 
visits are of significant importance in capturing the relations of subjects’ 
progression. However, the traditional LSTM architectures are incapable 
of modeling them. In order to solve this problem, Time_LSTM is pro-
posed to model the time information by adding a time gate to Long Short 
Term Memory (LSTM) [31]. Hence, it allows Time_LSTM to model the 
temporal relation by capturing the variable interval information. Based 
on the update equations from Eq. (6) to Eq. (10), Time_LSTM add one 
update equation for Tm as: 

Tm = σt(XmWxt + σ△t(△tmWtt)+ bt) (11) 

Then Eq. (8) and Eq. (9) are modified as: 

cm = im ⊙ Tm ⊙ σc(XmWxc + hm− 1Whc + bc) (12)  

om = σo(XmWxo +△tmWs
to + hm− 1Who + bo) (13)  

Where △tm is the time interval and σ△t is a sigmoid function. The 
processing of the shared layer at time t is updated as: 

hs
t = Time_LSTM(Xt, hs

t− 1, θs) (14)  

Where Xt ∈ R1×D is the D dimensional input feature at time t, and θs 
denotes the parameters of the shared layer. Concretely, the internal 
operations in the shared layer Time_LSTM are as Eq. (6) to Eq. (13) 

To enhance the interaction between task-specific layers and the 
shared layer, an attention mechanism is developed to enable the task- 
specific module to learn task-related information. Through assigning 
one attention mask for each task, it is able to automatically determine 
the relevant information for each specific task from the shared knowl-
edge. The collaborate learning strategy allows learning of both task- 
shared and task-specific information at the same time. 

We denote the learned attention mask of task q at time t as aq
t : 

aq
t = σ(hs

t W
q
att) (15)  

Where Wq
att is the learnable parameter in the attention layer for task q. aq

t 
is utilized to control how much information is transformed from the 
shared layer to each task-specific layer. If the learned aq

t is close to 1, that 
means other tasks contribute more to task q. On the contrary, the learned 
aq

t close to 0 means that task q gets less information from other tasks. 
The information h

′s
t transformed into the task-specific layer is then 

computed by element-wise multiplication of the attention mask with the 
hidden output of the shared layer: 

h
′s
t = aq

t ⊙ hs
t (16) 

Fig. 4(c) shows the attention module, where all the attention mod-
ules for different tasks have the same design, although their weights are 
individually learned. 

For the task-specific layers, the input features are concatenated with 
the output h

′s
t of the attention module. This enables each task to share the 

information from all tasks. The output of task q at time t can be denoted 
as: 

hq
t = Time_LSTM(

[
Xt

h
′s
t

]

, hq
t− 1, θq) (17) 
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where θq denotes the parameters of a task-specific layer. 

4.2. Temporal smoothness 

We propose a regularization for capturing the temporal correlation 
in disease progression. We assume that there is a relatively small dif-
ference between the cognitive scores of two successive time points, 
which is also in line with the fact (as shown in Fig. 3). The temporal 
smoothness is modeled by penalizing the large difference between the 
predictions of multiple tasks at the consecutive time points. . 

4.3. Loss function 

The MTL-ATM is trained to predict the future observation given three 
initial observations (e.g., predicting the disease progression at M24, 
M36, M48 and M60 given the MRI features at M0, M6 and M12). Errors 
between the actual observations and predictions are used to update the 
model parameters. It is worth noting that the loss function was only 
calculated with available observations. The overall loss Loverall is defined 
as follows: 

Loverall =
∑q

k=1
λk(λcLc + λrLr + λsLs) (18)  

Where λk is a parameter that determines the weight of the k-th task, q is 
the number of tasks. λc, λr and λs are the weights for classification loss, 
regression loss and temporal smoothing loss, respectively. Lc and Lr are 
prediction losses for the categorical variable (Diagnosis status) and 
continuous variables (Ventricles, ADAS-Cog13, MRI measurements) at 
all time points except time M0, respectively. Here, we choose cross- 
entropy loss and mean absolute error(MAE) for Lc and Lr: 

Lc =
∑

i>1
(CrossEntropy(yDiag

i ⊙ MDiag
y,i , ŷDiag

i ⊙ MDiag
y,i ))

=
∑

i>1

∑3

j=1
(− (yDiag,j

i ⊙ MDiag,j
y,i )log(ŷDiag,j

i ⊙ MDiag,j
y,i ))

(19)  

Lr =
∑

i>1
(MAE(yVen

i ⊙ MVen
y,i , ŷVen

i ⊙ MVen
y,i )

+MAE(yCog
i ⊙ MCog

y,i , ŷCog
i ⊙ MCog

y,i )

+MAE(X ⊙ Mi
x, X̂ ⊙ Mi

x))

(20) 

In order to capture the temporal smoothness on MRI biomarker and 
cognitive scores, we incorporate a time smooth regularization term [32] into 
the loss function to capture the smoothness of outputs from adjacent time 
points. The temporal smoothness can be enforced by penalizing the differ-
ence between models of consecutive time points, as shown in Eq. (21): 

Ls =
∑

i>2
((ŷVen

i ⊙ MVen
y,i − ŷVen

i− 1 ⊙ MVen
y,i− 1)

2

+(ŷCog
i ⊙ MCog

y,i − ŷCog
i− 1 ⊙ MCog

y,i− 1)
2
)

(21) 

Based on the above loss function, our prediction module products 
several outcomes, i.e., MRI measurements X̂, cognitive tests ̂yCog, clinical 
state ŷDiag and Ventricles ŷVen. The outputs at each time point t are 
formulated as: 

ŷDiag
t = softmax(Wclaht + bcla) (22)  

X̂ t, ŷVen
t , ŷCog

t = Wreght + breg (23)  

where ŷDiag
t is prediction probabilities of clinical diagnosis, ŷVen

t and ŷCog
t 

are the prediction value of Ventricles and ADAS-Cog13, respectively. X̂t 
is the predicted MRI measurement that is utilized to impute the missing 
Xt value at time t. Wcla and Wreg are weight matrices that need to be 
learned. bcla and breg are bias terms. 

Through this process, our proposed MTL-ATM encodes the longitu-
dinal data and captures underlying temporal characteristics from it. 
Lastly, the encoded representations are further transformed to predict 
the clinical status, volumetric measurements and cognitive scores at the 
next time point. 

4.4. Optimization 

The proposed formulation is challenging to solve due to a large number of 
tasks, resulting in the involved task weight parameters to be difficult to 
optimize. The appropriate task weight is important for the prediction per-
formance. How to obtain the best weight parameter for each task for 
balancing the corresponding contribution at each training step is a challenge. 

In our work, we assign different weights for each term in Eq. (18) by 
developing a dynamic task weighting scheme into the optimization, 
which enables the model to achieve a balanced training automatically 
by dynamically tuning gradient magnitudes. We define the weighting λk, 

c = λkλc, λk,r = λkλr, λk,s = λkλs of task k at the i-th batch as: 

λi
k,c =

(
Li

k,c

L1
k,c

)α

λi
k,r =

(
Li

k,r

L1
k,r

)α

λi
k,s =

(
Li

k,s

L1
k,s

)α

(24)  

where α is a hyperparameter, and the weighting of each loss item con-
siders the loss ratio between the current loss and the initial loss, which 
can measure how well the model has been trained for that loss. When a 
loss is poorly trained, the ratio is close to 1 and takes a larger proportion 
in the overall loss and gradient, and vice versa. The procedure of the 
network optimization is shown in Algorithm 1: 

Algorithm 1. Training MTL-ATM  
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5. Experiments 

5.1. Datasets and experiment setting 

5.1.1. Datasets 
The data utilized in this work is provided by the TADPOLE challenge 

[33], consisting of 1737 subjects from the ADNI database [34]. Although 
the TADPOLE dataset offers numerous kinds of biomarkers to forecast 
the AD progression, in this paper, we consider 22 variables recom-
mended by the TADPOLE challenge, which include: 

● Cognitive tests: MMSE, CDRSB, ADAS-Cog11, RAVLT_perc_forget-
ting, FAQ, MOCA RAVLT_immediate, 

RAVLT_learning, ADAS-Cog13, RAVLT_forgetting. 

● MRI measures: Hippocampus, WholeBrain, Fusiform, ICV, Ventri-
cles, Entorhinal, MidTemp.  

● PET measures: FDG, AV45.  
● CSF measures: ABETA_UPENNBIOMK9_04_19_17, 

TAU_UPENNBIOMK9_04_19_17, PTAU_UPENNBIOMK9_04_19_17. 
The clinical groups are labeled as AD, CN, EMCI, LMCI and SMC, 

which mean early MCI, late MCI and significant memory concern 
respectively. Similar to the previous work [6,7,21], CN and SMC are 
merged into the CN group, EMCI and LMIC are merged into the MCI 
group, thus resulting in three categories: CN(523), MCI(872) and AD 
(342). The number of subjects in different tasks is summarized in 
Table 2. The first time at the hospital is indicated as M0, and the 
follow-up visit is denoted by the duration starting from the baseline. For 
example, M6 refers to the time point at the 6th month. 

5.1.2. Experiment setting 
We conduct experiments to study how the changes in the brain are 

associated with different clinical biomarkers at four time points (i.e. 24- 
month, 36-month, 48-month, 60-month), which can be taken as four 

tasks. This yields a total of n = 676 subjects for Task1 (Baseline, M6, 
M12, M24) and for Task2, Task3 and Task4, the sample size are 425, 274 
and 140, respectively. The sample amount of each task is different in 
Table 2 due to the dropout from the study of some patients for various 
reasons. 

We report the average test results from 10-fold cross-validation. 
Specifically, the dataset is partitioned into three non-overlapping sub-
sets (training set, validation set and testing set). The radio of subjects in 
each subset is 8:1:1. All variables are z-normalized except clinical status. 
The z-normalization is performed on the training set. The mean and 
standard deviation from the training set are then utilized to z-normalize 
the validation and test sets. 

We use the Adam optimizer, early stopping criterion and hyper-
parameters selection strategy for training. The validation set is used to 
select the hyperparameters and we stop the training if the validation loss 
does not improve for 50 epochs. The optimal hyperparameters are ob-
tained by grid search. The ranges of grid search are summarized in 
Table 3. 

For quantitative evaluation, we choose the metrics of multi-class 
area under the receiver operating characteristic curve (mAUC) as well 
as balanced class accuracy (BCA) for clinical status prediction, and MAE 
for the MRI biomarker prediction as well as cognitive scores forecasting. 
Higher values of both mAUC and BCA metrics indicate better perfor-
mance. Whilst lower MAE indicates better performance. 

The proposed method is compared with four methods that deal with 
clinical time series prediction:  

● LSTM-F [35]: LSTM-F focuses on data gathered from the Children’s 
Hospital Los Angeles pediatric intensive care unit (PICU). In LSTM-F, 
the missing values are imputed by the most recent recorded mea-
surement, and then an LSTM is trained to addressing the task of 
multilabel classification of diagnosis giving clinical time series.  

● LSTM-M [36]: LSTM-M is an AD disease progression model based on 
a deep RNN with an LSTM module. For the missing data, LSMTM-M 
applies a median imputation for the ordinal variables and a mode 
imputation for the nominal variables.  

● MinimalRNN [6]: MinimalRNN is an AD disease progression model 
that utilizes the data provided by the TADPOLE challenge [33]. The 
predictions of the MinimalRNN are used as the inputs for the next 
time point.  

● DeepRNN [7]: DeepRNN is also a model for modeling the AD with 
incomplete longitudinal data from the TADPOLE challenge. In 
Ref. [7], missing value imputation, forecasting of future MRI 
biomarker, cognitive score and clinical status prognosis over multi-
ple time points are jointly learned in a unified framework. 

5.2. Results 

To verify the effectiveness of our proposed method for multiple time 
points prediction, we compare the proposed MTL-ATM approach with 
LSTM-F, LSTM-M, MinimalRNN, and DeepRNN. For the four time points 
from M24 to M60, we predict their ADAS-cog13, Ventricles and clinical 
diagnosis with the features of MRI, PET and CSF from the first three time 
points(M0, M6 and M12). Table 4 and Table 5 show the performance on 

Table 2 
Description of different tasks in the experiments.  

Tasks Observed time points Predicted time points Number of subjects 

Task1 M0 M6 M12 M24 676 
Task2 M0 M6 M12 M36 425 
Task3 M0 M6 M12 M48 274 
Task4 M0 M6 M12 M60 140  

Table 3 
The grid search space for the hyperparameters.  

Hyperparameter Range 

Hidden size 32,64,128,256,512 
Dropout rate 0.1,0.2,0.3,0.4 
Learning rate 1e− 2, 1e− 3, 5e− 3, 5e− 4 

Number of hidden layer 1, 2, 3 
Weight decay 1e− 3, 1e− 4, 1e− 5  

Table 4 
Performance on a multi-class (AD vs. MCI vs. CN) classification task in terms of mAUC. The best results are bold, and superscript 
symbol indicates that our proposed approach significantly outperformed that method on that score. p represent Student’s t-test 
level (†: p = 0.05, *:p = 0.01, ▴:p = 0.001).  

Methods M24 M36 M48 M60 

LSTM-F 0.882 ± 0.046* 0.858 ± 0.028 0.783 ± 0.050▴ 0.779 ± 0.048* 
LSTM-M 0.870 ± 0.044* 0.836 ± 0.040▴ 0.790 ± 0.052▴ 0.780 ± 0.034* 
MinimalRNN 0.921 ± 0.039† 0.883 ± 0.026 0.833 ± 0.091† 0.830 ± 0.051†

DeepRNN 0.943 ± 0.021 0.899 ± 0.035 0.876 ± 0.027† 0.822 ± 0.083 
MTL-ATM (Ours) 0.935 ± 0.023 0.920 ± 0.039 0.905 ± 0.034 0.897 ± 0.085  
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classification tasks in terms of mAUC and BCA over the 4 time points. 
Table 6 and Table 7 show the prediction errors in MAE over ADAS-cog13 
and Ventricles. 

According to Tables 4–7, we can draw the following conclusions:  

1. The proposed method achieves decent and comparable performance 
when compared to state-of-the-art methods, resulting in 5.6%, 5.7%, 
4.0%, 11.8% and 3.5%, 2.7%, 12.4%, 5.5% increase in mAUC, BCA, 
MAE (ADAS-cog13) and MAE (Ventricles) compared with the pre-
vious MinimalRNN model and DeepRNN model, respectively. This 
result indicates that learning multiple tasks jointly and utilizing the 
correlation among related tasks greatly improve the performance of 
each task.  

2. From the perspective of the filling approach, the proposed method, 
MinimalRNN and DeepRNN belong to the model filling whilst LSTM- 
F and LSTM-M belong to linear filling and mean filling. It is clear that 
the three model filling methods outperform the linear filling and 
mean filling methods, which is a collaborative learning method for 

the imputation and prediction tasks while both the LSTM-F and 
LSTM-M conduct the imputation and prediction independently. This 
again validates that accurate imputation can introduce contributions 
to the prediction, while appropriate prediction can also benefit 
imputation performance. The observation is consistent with the 
result in Refs. [6,7].  

3. Our model is more effective at the farther time points. For example, 
at the prediction at time point M60, the proposed method improves 
MinimalRNN by 8.1% and DeepRNN by 9.1% in terms of mAUC. The 
improved performance can be attributed to the correlation of the 
tasks, which helps to learn a better prediction ability for the pre-
diction at the farther time points of AD diagnosis and hence yield 
better results compared to other works. Our results shed new light on 
the importance of multi-task learning in the AD progression model 
for improving prediction performance. 

Table 7 
Performance of forecasting Ventricles at time M24, M36, M48, M60 based on data in M0, M6, M12 in terms of MAE. The best 
results are bold, and superscript symbol * indicates that our proposed approach significantly outperformed that method on that 
score. p represent Student’s t-test level (†: p = 0.05, *:p = 0.01, ▴:p = 0.001).  

Methods M24( × 10− 3) M36( × 10− 3) M48( × 10− 3) M60( × 10− 3) 

LSTM-F 8.42(±0.67)▴ 8.61(±1.09)▴ 8.29(±1.75) 9.26(±1.83) 
LSTM-M 8.73(±0.64)▴ 8.71(±1.15)* 8.57(±1.75†) 9.65 ± 2.13†

MinimalRNN 7.55(±0.47) 7.70(±0.98) 8.50(±2.65) 9.63(±2.37) 
DeepRNN 6.45(± 1.65) 7.92(±2.17) 8.00(±3.21) 9.00(±3.23) 
MTL-ATM (Ours) 7.35(±0.51) 6.78(± 1.13) 7.32(± 2.07) 7.81(± 2.57)  

Table 8 
Performance at different time points of comparable filling methods.  

Filling strategies mAUC ↑ BCA ↑ MAE (Cog13) ↓ MAE (Ventricles) ↓ 

( × 10− 1) ( × 10− 1) ( × 100) ( × 10− 3) 

M24 M36 M48 M60 M24 M36 M48 M60 M24 M36 M48 M60 M24 M36 M48 M60 

LSTM-F 8.82 8.58 7.83 7.79 7.74 7.03 6.35 6.50 4.40 5.27 5.11 5.87 8.42 8.61 8.29 9.26 
LSTM-M 8.70 8.36 7.90 7.80 7.71 6.96 6.91 6.46 3.89 4.67 5.16 6.20 8.73 8.71 8.57 9.65 
Mean filling 8.82 8.70 8.59 8.45 8.16 7.72 7.84 7.41 3.83 4.23 4.55 5.26 7.51 7.02 6.92 8.31 
Linear filling 9.20 8.72 8.96 8.45 8.32 7.67 7.87 7.03 3.85 4.32 4.71 5.25 7.38 7.03 7.48 7.95 
Forward filling 9.25 9.11 9.04 8.49 8.37 7.96 7.90 7.49 3.80 4.23 4.79 5.47 7.63 7.03 6.89 8.45 
Model filling (Ours) 9.35 9.20 9.05 8.97 8.42 8.04 8.18 7.52 3.83 4.20 4.71 5.23 7.35 6.85 7.32 7.81  

Table 5 
Performance on a multi-class (AD vs. MCI vs. CN) classification task in terms of BCA. The best results are bold, and superscript 
symbol * indicates that our proposed approach significantly outperformed that method on that score. p represent Student’s t-test 
level (†: p = 0.05, *:p = 0.01, ▴:p = 0.001).  

Methods M24 M36 M48 M60 

LSTM-F 0.774 ± 0.075† 0.703 ± 0.044 0.635 ± 0.071▴ 0.650 ± 0.033* 
LSTM-M 0.771 ± 0.038▴ 0.696 ± 0.041▴ 0.691 ± 0.085* 0.646 ± 0.052†

MinimalRNN 0.833 ± 0.045† 0.750 ± 0.051* 0.746 ± 0.070 0.717 ± 0.070 
DeepRNN 0.858 ± 0.036 0.782 ± 0.047 0.764 ± 0.047 0.731 ± 0.084 
MTL-ATM (Ours) 0.842 ± 0.037 0.804 ± 0.032 0.818 ± 0.062 0.752 ± 0.096  

Table 6 
Performance of forecasting Cog13 at time M24, M36, M48, M60 based on data in M0, M6, M12 in terms of MAE. The best results 
are bold, and superscript symbol * indicates that our proposed approach significantly outperformed that method on that score. p 
represent Student’s t-test level (†: p = 0.05, *:p = 0.01, ▴:p = 0.001).  

Methods M24 M36 M48 M60 

LSTM-F 4.40 ± 0.348* 5.270 ± 0.802▴ 5.112 ± 0.836 5.866 ± 1.763 
LSTM-M 3.892 ± 0.278 4.672 ± 0.737 5.163 ± 0.867 6.197 ± 1.734 
MinimalRNN 3.801 ± 0.238 4.198 ± 0.721 5.070 ± 1.125 5.802 ± 2.303 
DeepRNN 4.067 ± 0.311† 4.698 ± 0.779 5.564 ± 1.031† 6.411 ± 1.444 
MTL-ATM (Ours) 3.826 ± 0.316 4.196 ± 0.754 4.712 ± 0.913 5.238 ± 1.691  
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6. Discussion 

6.1. Effect of imputation 

In order to investigate the influence of different interpolation 
methods on the following prediction performance, we conduct four ex-
periments with four missing values interpolation strategies: Mean 
filling, Linear filling, Forward filling and Model filling. It is worth noting 
that the experimental settings are the same for the four experiments 
except for the filling strategies. 

We present the experimental results in Table 8. The results, shown in 
Table 8, once again validate that model filling exhibits an impressive 
improvement over the competing filling methods in most cases at all 

time points, except the MAE of ADAS-Cog13 at time M24 and time M48, 
which further indicates the values imputed by the model are more ac-
curate than other filling strategies. Particularly, our model achieved a 
promising prediction performance at the task of M60, which is vital for 
the accurate progression estimation of AD at its prodromal stage. 

In addition, it can be seen that the proposed MTL-ATM method with 
Mean filling and Forward filling achieves 0.816 and 0.837 in terms of 
BCA, resulting in a 5.5% and 7.5% increase compared with the LSTM-M 
and LSTM-F, respectively. This demonstrates that our proposed MTL- 
ATM method provides a flexible framework into which different filling 
strategies can be incorporated. 

6.2. Ablation studies 

In addition to the above-mentioned results, we are also interested in 
the effectiveness of each component in the proposed MTL model. To 
examine the effectiveness of the component of attention and temporal 
smoothness regularization, we conduct experiments on the three cate-
gories of variants, denoted as MTL-A, MTL-TM and MTL:  

● MTL-A: MTL-ATM without temporal smoothness regularization. 

Fig. 5. Result of ablation studies on the effect of time smooth loss and attention component.  

Table 9 
ranking_score at four time points.  

Methods M24 M36 M48 M60 

MTL 13 12 14 15 
MTL-TM 13 11 13 8 
MTL-A 5 7 7 9 
MTL-ATM 9 8 6 7  
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● MTL-TM: MTL-ATM without the attention component. The shared 
information is transformed to the task-specific layer directly.  

● MTL: MTL-ATM without both temporal smoothness regularization 
and attention component. 

Fig. 5 shows the performance of MTL-ATM and its three variants in 
terms of mAUC, BCA and MAE. From Fig. 5(a,b,c,d), it can be seen that 
MTL-ATM, MTL-A, MTL-TM are better than MTL in most cases. The 
proposed multi-task learning schemes involving the attention mecha-
nism and temporal regularization not only improve the performance of 
multi-task learning, but also benefit single-task learning. An interesting 
observation is that the performance improvement of MTL-TM on Ven-
tricles is more obvious than on ADAS-Cog13, which is also consistent 
with the fact that with the progress of AD disease, the Ventricular vol-
ume becomes gradually higher. However, ADAS-Cog13 is a neuropsy-
chological test administered by a clinical expert, although it may 
increase in a direct and quantifiable manner, due to some practice ef-
fects, the test results may be unstable. 

In order to show the performance of the proposed approach and the 
three variants intuitively, we propose a measurement ranking_score to 
evaluate the overall performance. ranking_score is the sum of ranking 
score on four indicators. ranking_score of each approach is calculated on 
four indicators and the results are shown in Table 9. The lower the 
ranking_score is, the better. 

In Table 9, it is obvious to see that MTL-ATM, MTL-A and MTL-TM 
generally obtain better performance than MTL, verifying the useful-
ness of the attention component and temporal smoothness regulariza-
tion. Exploiting two complementary multiple task correlations is 
important. More specifically, on the one hand, due to the task correla-
tion, the attention component can adaptively determine how much in-
formation can be transformed from the shared layer to the task-specific 
layer. On the other hand, the temporal smoothness regularization guides 
the model to predict more appropriate values by penalizing the large 
difference between two consecutive prediction values. 

It is more challenging for the predictive tasks at the farther time 

points with less available data such as M60. MTL-ATM performs better 
than MTL-A and MTL-TM at M48 and M60, which verifies the predictive 
ability of MTL-ATM at farther time points. The fact implies the necessity 
to develop multi-task learning scheme to tackle disease progression 
problems, which also validates our motivation to build multi-task 
learning for multiple prediction tasks over time points. The ablation 
study further demonstrates the effectiveness of the proposed attention 
and time smooth mechanism for the prediction at the farther time 
points. 

6.3. Effect of multi-task learning 

It is noteworthy that in the AD progress prediction task, the major 
difference between our work and other works is the joint prediction of 
multiple tasks at different time points. Thus we conduct experiments to 
discuss the effect of multi-task learning in our proposed approach by 
varying the task number. It is worth noting that by removing the shared 
layer and the attention layer, our model degenerates to a single task 
learning model. 

Table 10 shows the results of the proposed model predicting at 
multiple time points with different task numbers. First, in the case of a 
single task, we can see that the performance of various indicators 
gradually decreases over time. It reflects that the difficulty of the pre-
diction task increases over time since the relationship to be modeled 
between the features and the prediction tasks becomes weaker. Such a 
single learning model is incapable of jointly predicting multiple tasks 
over time. However, as the number of tasks increases, we observe 
consistent improvements in all metrics. As shown in Table 10, jointly 
training of multiple tasks greatly improves the performance at each time 
point compared to the single learning task. Even though MAE perfor-
mance of ADAS-Cog13 at time M24 drops by 2.67%, 3.17%, 1.14% with 
the jointly learning the other tasks, its performance at time M36, M48, 
M60 improves by 1.12%, 16.7%, 25.0% when trained with 4 tasks. 
These observations suggest that collaboratively learning of multi-task at 
multiple time points has merit. And such a finding is crucial for the early 

Table 10 
Performance at different time points with 1, 2, 3 and 4 tasks.  

Task num mAUC ↑ BCA ↑ MAE (ADAS-Cog13) ↓ MAE (Ventricles) ↓ 

( × 10− 1) ( × 10− 1) ( × 100) ( × 10− 3) 

M24 M36 M48 M60 M24 M36 M48 M60 M24 M36 M48 M60 M24 M36 M48 M60 

1 task 9.24 8.30 7.20 7.20 8.33 7.22 6.63 6.29 3.783 4.731 5.655 6.983 7.49 7.83 8.99 9.93 
2 tasks 9.28 9.25 – – 8.44 8.20 – – 3.884 4.253 – – 7.69 6.95 – – 
3 tasks 9.34 9.18 9.16 – 8.42 8.05 8.24 – 3.795 4.220 4.758 – 7.41 6.61 6.92 – 
4 tasks 9.35 9.20 9.05 8.97 8.42 8.04 8.18 7.52 3.826 4.196 4.712 5.238 7.35 6.78 7.32 7.81  

Table 11 
Effect of the number of input time points. Content in brackets is the total number of samples used in each task.  

Num of the input time points mAUC ↑ BCA ↑ MAE (ADAS-Cog13) ↓ MAE (Ventricles) ↓ 

( × 10− 1) ( × 10− 1) ( × 100) ( × 10− 3) 

M36 M48 M60 M36 M48 M60 M36 M48 M60 M36 M48 M60 

2 input points (499,326,167 subjects) 8.61 8.51 8.86 7.72 7.61 7.69 4.20 4.91 6.17 7.65 8.13 8.28 
3 input points (425,274,140 subjects) 8.58 8.38 8.53 7.22 7.28 6.67 4.32 4.69 5.17 7.49 7.83 8.37 
4 input points (360, 234, 117 subjects) 8.80 8.56 8.61 7.19 7.27 7.48 4.42 4.77 5.65 6.94 7.35 9.63  

Table 12 
Comparison among the methods with the same task number but a different combination.  

Task combination mAUC ↑ ( × 10− 1) BCA ↑( × 10− 1) MAE (ADAS-Cog13) ↓ ( × 100) MAE (Ventricles) ↓ ( × 10− 3) 

M24 M36 M48 M60 M24 M36 M48 M60 M24 M36 M48 M60 M24 M36 M48 M60 

24,36,48 9.34 9.18 9.16 – 8.42 8.05 8.24 – 3.80 4.22 4.76 – 7.41 6.61 6.92 – 
36,48,60 – 8.58 8.38 8.53 – 7.22 7.28 6.67 – 4.32 4.69 5.17 – 7.49 7.83 8.37  
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Alzheimer’s disease prediction especially for the prediction at the 
farther time points. 

6.4. Effect of the number of the input time points 

We evaluate our method with three previous inputs at time points 
M0, M6 and M12 in the previous experiments. In fact, our model is also 
effective with different numbers of input time points. In this section, we 
validate the proposed approach on 2, 3 and 4 input time points. For a fair 
comparison, we fix the predictive future tasks at the M36, M48 and M60 
with varying the input time point numbers, respectively. 

As shown in Table 11, when the number of input time points in-
creases, the amount of data gradually decreases. However, the perfor-
mance of the proposed method does not drop dramatically, even 
improves in some cases. With the increase of the input time points, more 
available historical information can be obtained, and then the correla-
tion between multiple tasks can be better captured. The results 
demonstrate that the proposed MTL-ATM method is effective regardless 

of the number of input time points. 
In addition, we make a comparison among the methods with the 

same task number (3) but a different combination. As shown in Table 12, 
the result demonstrates that the [24,36,48] achieves a better perfor-
mance than the [36,48,60] with respect to mAUC, BCA and MAE(Ven-
tricles) at the 36 and 48 time points. The reason is that the task of 24 is 
more beneficial for the 36 and 48. Moreover, it also indicates that the 
correlation between 24 and 36/48 is stronger than the one between 60 
and 36/48. 

6.5. Irreversibility analysis 

Alzheimer’s disease is a progressive neurodegenerative disease, so 
the method should also reflect the character of irreversible neuro-
degeneration. That is, the clinical status can only be converted from CN 
to MCI or AD, and there is no reverse conversion. To explore the irre-
versible characteristics in different methods, we compare the perfor-
mance of different approaches on subjects with different clinical states. 

Fig. 6. Results of longitudinal status prediction between MTL-ATM our the proposed method, MinimalRNN, DeepRNN, LSTM-F and LSTM-M.(Best viewed in color). 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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In Fig. 6, the plots in each panel represent clinical status conversion from 
different subjects. Green, yellow and red represent CN, MCI and AD, 
respectively. 

It is clear that all of the MinimalRNN, LSTM-M and LSTM-F methods 
lead to some reversible conversions. Among them, LSTM-M and LSTM-F 
have the worst performance in Fig. 6(d,e,f), they cannot catch the 
change of state in clinical status. As for DeepRNN, although its pre-
dictions do not appear reversible conversions, its predictions are not as 
accurate as our proposed method, and there are some misclassifications 
in Fig. 6(a,d,f). There is no inverse transformation made by our proposed 
method, which reflects the irreversible characteristics of our method. 
For three examples without status changing (Fig. 6(a,b,c)), our model 
still achieve a stable prediction whereas the comparable methods yield 
poor results. The results verify that our model has ability of accurate and 
consistent prediction. That contributes to the time smoothing mecha-
nism in our proposed approach, which considers that the predicting 
results of adjacent time points are similar and there is a certain trend, 
which could help our method capture changes in time and ensure the 
irreversibility. Therefore, our proposed method not only predicts accu-
rately, but also reflects the irreversible characteristics in all situations. 

7. Conclusion 

In this paper, we have proposed a general deep multi-task learning 
model (MTL-ATM) to jointly consider missing imputation and future 
prediction. We propose a new perspective of predictive progression with 
a multi-task learning paradigm. Different from the previous work, we 
introduce a multi-task learning architecture with an attention mecha-
nism and smoothness regularization to better model the correlation 
across the different tasks. It can simultaneously achieve the optima of 
both the imputation and prediction, both of which benefit each other. 
Moreover, we develop an optimization strategy for jointly learning the 
multi-task over time points. The ATM-MTL not only improves the per-
formance of progression, but also benefits the missing value imputation. 
Experimental results on the ADNI dataset demonstrate the effectiveness 
of the proposed model. 
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